A modification of the k-means method for quasi-unsupervised learning
نویسندگان
چکیده
0950-7051/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.knosys.2012.07.024 ⇑ Corresponding author. E-mail address: [email protected] (J. Nin). Since the advent of data clustering, the original formulation of the clustering problem has been enriched to incorporate a number of twists to widen its range of application. In particular, recent heuristic approaches have proposed to incorporate restrictions on the size of the clusters, while striving to minimize a measure of dissimilarity within them. Such size constraints effectively constitute a way to exploit prior knowledge, readily available in many scenarios, which can lead to an improved performance in the clustering obtained. In this paper, we build upon a modification of the celebrated k-means method resorting to a similar alternating optimization procedure, endowed with additive partition weights controlling the size of the partitions formed, adjusted by means of the Levenberg–Marquardt algorithm. We propose several further variations on this modification, in which different kinds of additional information are present. We report experimental results on various standardized datasets, demonstrating that our approaches outperform existing heuristics for size-constrained clustering. The running-time complexity of our proposal is assessed experimentally by means of a power-law regression analysis. 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Knowl.-Based Syst.
دوره 37 شماره
صفحات -
تاریخ انتشار 2013